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Abstract (not a viewgraph )

The Schwinger method for solving inverse gamma-ray transport
problems was proposed in a previous paper . The method is iterative and
requires a set of uncoupled forward and adjoint transport calculations in each
iteration. In this paper, the Schwinger inverse method is applied to the
problem of identifying an unknown material in a radiation shield by
calculating its total macroscopic photon cross sections . The gamma source
is known and the total (angle-independent) gamma leakage is measured . In
numerical one-dimensional spherical and slab test problems, the Schwinger
inverse method successfully calculated the photon cross sections of an
unknown material . Material identification was successfully achieved by
comparing the calculated cross sections with those in a precomputed material
cross section library, although there was some ambiguity when realistic
measurements were used. The Schwinger inverse method compared very
favorably with the standard single energy transmission technique (SET) .

These viewgraphs accompany a short summary, LA-UR-04-3968 .
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Motivation

• Consider a radioactive object emitting y rays of discrete energies that
are well resolved using high-purity germanium (HPGe) detectors .

• We want to use y leakage measurements to tell us what the system is .

Source

~~)

Shield materials

Shield and source interfaces

0
Detector

• The Schwinger inverse method (Favorite, Nucl. Sci. Eng., 2004) and
the Newton-Raphson method (Favorite and Sanchez, ICRS-10/RPS2004)
have been applied to the problem of determining internal interface locations .

The Schwinger inverse method was applied to the problem of
determining an unknown shield material, but the solution was not
implemented numerically until now

• In this talk, we will :
+ Describe the Schwinger inverse metho d
+ Describe another inverse method for determining a composition,
the single energy transmission technique (SET )
+ Demonstrate that the Schwinger inverse method converges to a
set of cross sections
+ Demonstrate that the converged cross sections can be used t o
identify a material
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Notation

• We consider only the transport of photons of discrete energies and
assume that any scattered photons lose energy and are removed. The angular
flux of photons at the discrete energy denoted by index g is given by

Sa • O yrg (r, fl) + If (r)V/9 (r , 12) = qg (r )
for g =1, . . .,G. (This equation represents theforward problem.)

• The adjoint equation i s
- SL • O V rtg (Y, fl) + Eg ~Y)~

*

g (Y, fl) - q sg (r) ,
where the source is to be defined (it will be the detector response function).

• These equations can be rendered in operator notation a s
L9V/ g = gg

and
L'gyr`g = q *g .

Suppose the system leakage for each energy line g is measured at a
detector. The quantity of interest i s

Mg = fdvjdA(r,A)v(r,A)

= Edyig

where the detector response function Ed (r, SL) is
A

fl) =
jj

' ndg(r - rd),

where n d is the outward unit normal vector at point r on the surface r = rd .

[• In this work, we use the approximation

19
A

(r, fl) AYVd
0, otherwise ,

with rd= 100 cm, Sr = 0.1 cm, Ad = 4 )zrd ,and

VD = 4)r C(YD + CSY'~ 3 - (Y 'D - !SY')3 ] / 3 . 1
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Perturbations and the Schwinger functional

• The perturbed quantity i s the unperturbed quantity plus the
perturbation ; e .g.,

E~
V9 = E

gn
+ AEg„ .

• The forward and adjoint equations for the perturbed case are
L'g yr'g = q' g

and

L F*g SI/
f
#g = E a

respectively. The perturbed quantity of interest is

Mpg =
I

aY
1rg ) •

(The leakage detector response is not perturbed .)

• A variational functional for Mfg is the Schwinger functional,
N (qy*gtg )

9 -9 W )
v 1Y/ ' Y/~

V-
=gL,g~g

{ \ /
fdV fdSZ Eg (r f^1)09g (r Si) }a > > ~ dV fd.(l yig (r, SZ)q'g (r)}

JdV fda yi`g (r, SZ)lSt • O yg (r, SZ ) + Egg (r)1%ig (r, fl)

• Using the unperturbed forward and adjoint fluxes as trial functions
instead of the perturbed forward and adjoint fluxes reduces the Schwinger
functional to

M'g =Mg
v

dV fdA yr`g (r, SZ)gg (r) + JdV fdA yi`g (r, SZ)Ogg (r)

dV fdA yi'g (r, SZ)gg (r) + fdv fdA yr`g (r,

Los Alamos National Laboratory, X-5 3 of 13



The Schwinger Inverse Method (1 of 2 )

• In the Schwinger inverse method , we use a measurement for M ss' (call

it Mo ) and attempt to find AE ~ and / or Oq g

Mx =Mg
0

dV Jdc2 yi *g (r, S2)q g (r) + JdV Jdc2 yi'g (r, S2 ) Aq g (r )

dV fdfl V/ 'g (r, SZ)gg (r) + [dV [dc.V'g (r,h ) AEK (r)V19( r, S2)

• Rearrange the above equation to obtain

1 fdV Jd~ tV * g (r, S1)DE 9 (r)yl'(r, fl)
JdV fd.Q^ V*g ( r ,!Cl)4x (r )

M
9

g

Jdv JdSZ yi 'g (r, St)Aq g (r) = Mg - M°
Mo M g

This equation is the essence of the Schwinger inverse method and was
manipulated to solve a variety of inverse transport problems in Nucl. Sci .
Eng.

• For the problem of an unknown shield material, Oqx (r) = 0 and the

second integral in brackets vanishes. The first integral in brackets is

fdV Jd~ yr * g (r, S1 )DE9 (r)+Vg (r, fl)
N

(rn -
E

;:n ~ Jr~ dV JdSZ yr~K (r , SZ)yr g (r,!(2),

n_ 1

where
+ N is the number of unknown shield materials
+ E ;g is the total cross section to be computed for region n , which

is bounded by surfaces r = r„_ , and r = r„ .

Source

R- I

Y x
t,n

Y

0
Detec to r
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The Schwinger Inverse Method (2 of 2)

• The equation for 2:'9 n is
N

fdA
~ n

- n )
f

dY

T~

lr g (r f'~

^

G)Y' g (r, fl)
rn In=1

Mg -Mg

= fdV fdA y/*g (r,~)R'g (r) Mg ° 9=L . . .,G.
0

• There are G equations but G x N unknowns E n ; thus, the equation~

cannot be solved unless there is only one unknown material in the shield .

• In this case, the equation becomes a set of G equations for the set of
cross sections for region n ,

119 =19
+ JdVfdAy/(r,A)q(r)

Mg - Mo
r, ~

Ma g =1, . . . , G .t,n t,n r
n JdV fdA yig (r, SZ)Vg ( )

Pn_~

• The G equations are completely uncoupled. Each of the cross sections
will converge independently, at its own rate .

To identify the unknown material, we compare the converged cross
sections E!g with those of 40 materials in a precomputed cross section

library using the root mean square (RMS) for material m :

(RMS)m =
G g_,

• A x2 norm would be more appropriate if there were estimates of the
errors on the converged cross sections V,9 .
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The Single Energy Transmission Technique (SET )

The SET is a standard method of composition analysis . From the

attenuation equation in a slab, Ib = Ia e-~ 9 `, the total cross section i s
g

Eg =1 1n ~g .
t I6

This equation is used to determine the composition of a two-component
mixture.

We compare the SET to the Schwinger method for a slab and a sphere .
For the sphere, we use the approximation

g
Eg -~ 1 InJg

t Jb

where
Ja

and
Jb

are the partial currents of gamma rays of energy g

entering and exiting (respectively) the unknown material.

• In a multilayered slab, the monodirectional flux exiting the unknown
region, Ib ,can easily be reconstructed from the measured flux, Mo .

• In a multilayered sphere (with a source of finite radius), it is possible
only to approximate the partial current exiting the unknown region, J6 .

+ We assume that there is a way of perfectly calculating the partial

current
Jb

from the angle-integrated leakage measurement alone . This

assumption is quite favorable to the SET .

+ In our implementation, Jb is calculated using the Schwinger-

converged cross sections, guaranteeing consistency between J6 and

M go .

+ The partial current entering the unknown material, J9, is, of

course, available from a transport calculation of any model because
there is no backscattering from the unknown material in this paper .
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Test problem 1 - Cross section convergence

• Godiva model (sphe rical) :

• The 186-, 766-, and 1001-keV
uranium y lines are used .

• Transport calculations used
PARTISN , S32-

0 "Measurements" were obtained
with PARTISN and MCNP .

0
ri 1200%

1000%
v
0
2 800%
E
0

600%
U

4 00%

200%

0%

Void

12 .4 12 .9 13 . 2 c m

Initial guess was gold. Convergence of the 186- and 1001-keV lines :
1 800% -_ ---

t 1 86 keV , S32
1 600% --0- 100 1 keV, S32

-tr- 1 86 keV , M o nte Ca rl o
1400% ~- 100 1 keV, Mo n te Ca r lo ~ 2~

-200% -L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration numbe r

• When S32 measurements were used, the three cross sections converged
almost exactly to those for SS 304 .
• When Monte Carlo measurements were used, the Schwinger method
converged only to within -0 .2% of the true 186- and 1001-keV cross
sections, and only to within 1 .1 % of the true 766-keV cross section .

G oa iva

8 .741

0. 1%

0.0%

-0 .1%

-0 .2%

12 13 14
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Test problem 1 - Material identification

• When S32 measurements were used, the RMS difference for SS 304
was 8.2 x 10-' ; the next smallest RMS difference was 1 .9 x 10-3 for iron .
The correct material was easily selected .

• When Monte Carlo measurements were used, there is no way to
statistically tell the difference between SS 304 and iron:

Densi

1
2
3
4
5
6
7

Material
SS 304
Iron
Carbon steel
SS 316
Cobalt
Copper
Nickel

cm
7.86
7 . 86
7 .86
7.98
8 .90
8 .96
8 .902

Problem 1
RMS Diff.
3 .597E-3
4.394E-3
1 .721E-2
2.819E-2
1 .102E-1
1 .607E-1
1 .636E- 1

• In the Transactions, only the 186- and 1001-keV lines were used, and
iron had a smaller RMS than SS 304

• Interestingly, cadmium, which is between SS 316 and nickel in density,
has a much larger RMS difference (0 .9537) than those materials for this
problem.
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Test problem 2 - Cross section convergence

• Godiva model (spherical) :

• The 186-, 766-, and 1001-keV
coa iva Void

uranium Y lines are used.

8 .741 1 2 .4 12 .9 1 3 .2 cm

Initial guess was Al . Convergence of the 186- and 1001-keV lines :
20

% 10%

0 %

-10%
V0

-20%

- 30%
E
0
8 -40%
C

-50%
0

-60%

- 70%

-80%

0 1 2 3

Iteration numbe r

• The method converged to almost exactly the same cross sections as in
problem 1, but much faster. Note :

SS 304
Al
Au

t 186 keV , S3 2

0 -100 1 ke V, S 3 2

6 - 1 86 keV , Monte Carl o

0 1001 keV , M onte Carlo

0 .20%

0 . 15%

0 .10%

0 .05%

0 .00%

-0 .05%

-0 . 10%

-0 . 15%

-0 .20%

2 3

Density Difference with SS 30 4
7 . 86
2 . 70 -5 . 1 6
19 .3 11 .44
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Test problem 3 - Cross section convergence

• Godiva model (sphe rical) :

• The 186-, 766-, and 1001-keV
Godiva Void

uranium y lines are used .

8 .74 1

• Initial guess was Al.

• No convergence !

+ A large difference in the 186-keV line caused a huge
overcorrection in the new cross section, leading to zeros in the forward
and adjoint fluxes and a problem with 0/0 .

+ Using only the 766- and 1001 -keV lines remove s this problem .

Note :
Problem Material Density Difference with actual mate rial

SS 304 7 .86
l Alum . 2 .7 - 5 . 16
2 Gold 19 .3 11 .44

Lead 11 . 4
3 Alum . 2 .7 -8 .7

It is not just the density difference, but the direction that determines
how the method will converge .
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Test problem 4 - Cross section convergence

• Nuclear reactor shield with
Godiva source (spherical) :

• The 766- and 1001-keV
uranium y lines are used . The 186-
keV line was used with S32 but not
Monte Carlo measurements .

Godiva I Void

8 . 741 10. 0 12 . 5

Unknown
(Actually
Water)

Iro n

18 .2 30.2 cm

Initial guess was iron . Convergence of the 766- and 1001-keV lines :
s oo %

500%

400%0

a
w

300%v
m

E
200%

100%

0%

-100%

0 1 2 3 4 5 6

fteration numbe r

• When S32 measurements were used, the three cross sections converged
almost exactly to those for water.
• When Monte Carlo measurements were used, the Schwinger method
converged only to only to within 45% of the true 766-keV cross section and
27% of the true 1001-keV cross sectio n
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Test problem 4 - Material identification and the SE T

• S32 measurements:

For the Schwinger method , the RMS difference for water was
1 . 8 x 10-6; the next smallest RMS difference was 2 .2 x 10-3 for
seawater.

+ For the SET, the smallest RMS was for rubber, 2 .6 x 10 -3 . The
RMS for water was 8 .2 x 10-3; it was the fourth smallest.

• Monte Carlo measurements - The first 10 materials were the same for
both methods :

Schwinger
order

1
2
3
4
5
6
7
8
9
10

Material
Lucite
Rubber
Seawater
Water
Fiberglass
Wax
C-phenolic
Kevlar
Beryllium

Densi
(g/cm
1 .1 6
1 . 10
1 .025
1 .00
1 .00
0 .93
1 .40
1 .45
1 . 85
1 .90

Schwinger
RMS Diff.
2 .705E-2
2 .7 1 4E-2
2 .842E-2
2 .896E-2
3 .008E-2
3 .031 E-2
3 .066E-2
3 . 184E-2
3 .741E-2
5 . 303E-2

SET
RMS Diff.
3 . 057E-2
3 . 106E-2
3 .369E-2
3 .450E-2
3 . 605E-2
3 . 635E-2
3 .0 1 5E-2
3 .076E-2
3 .45 3E-2
4 .796E-2

SET
order

2
4
5
6
8
9
1
3
7

1 0

• Under the very special assumption that partial currents can be obtained
from an angle-integrated leakage measurement, the SET is about as good as
the Schwinger inverse method for a spherical problem with larg e
measurement error.
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Summary and conclusions

• The Schwinger inverse method has been applied to the problem of
material identification in a source / shield system.

• A material is identified by calculating its photon cross sections, then
matching them with those in a precomputed table .

+ One issue that was addressed is whether the Schwinger method
would converge to the correct cross section set. (It does.)

+ The second issue was whether a photon cross section set can be
used to identify a material . (It can provide a reasonable range of
candidate materials .)

• Some other method besides the Schwinger inverse method can be used
to calculate the unknown cross sections : the SET, the Marquardt method, etc .

• The single energy transmission technique (SET) was compared with
the Schwinger method. The SET was not designed for spheres .

+ It was assumed for the benefit of the SET that the exiting partial
current can be calculated from the angle-integrated leakage
measurement.

+ The SET was not very accurate when used with consistent S32
measurements .

+ The SET was about as accurate as the Schwinger method when
used with inconsistent Monte Carlo measurements .

• We have assumed perfect knowledge of the source and geometry ; we
don't want to.

• We intend to extend this methodology to two-dimensional cylindrical
systems.
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